Sierpiński gasket graphs and some of their properties
نویسندگان
چکیده
منابع مشابه
A 2-parametric generalization of Sierpinski gasket graphs
Graphs S[n, k] are introduced as the graphs obtained from the Sierpiński graphs S(n, k) by contracting edges that lie in no triangle. The family S[n, k] is a previously studied class of Sierpiński gasket graphs Sn. Several properties of graphs S[n, k] are studied in particular, hamiltonicity and chromatic number.
متن کاملUniform spanning trees on Sierpiński graphs
We study spanning trees on Sierpiński graphs (i.e., finite approximations to the Sierpiński gasket) that are chosen uniformly at random. We construct a joint probability space for uniform spanning trees on every finite Sierpiński graph and show that this construction gives rise to a multi-type Galton-Watson tree. We derive a number of structural results, for instance on the degree distribution....
متن کاملColoring Sierpiński graphs and Sierpiński gasket graphs
Sierpiński graphs S(n, 3) are the graphs of the Tower of Hanoi with n disks, while Sierpiński gasket graphs Sn are the graphs naturally defined by the finite number of iterations that lead to the Sierpiński gasket. An explicit labeling of the vertices of Sn is introduced. It is proved that Sn is uniquely 3-colorable, that S(n, 3) is uniquely 3-edgecolorable, and that χ′(Sn) = 4, thus answering ...
متن کاملOn the Hausdorff Dimension of the Sierpiński Gasket with respect to the Harmonic Metric
The spectral dimension and the Hausdorff dimension of the Sierpiński gasket are known to be different. Kigami proved that the Hausdorff dimension dh with respect to the harmonic metric is less than or equal to the spectral dimension and conjectured equality. We give estimates of dh which are strictly less than the spectral dimension and therefore disprove this conjecture. 1. Sierpiński gasket a...
متن کاملRandom Walks on Sierpiński Graphs: Hyperbolicity and Stochastic Homogenization
We introduce two new techniques to the analysis on fractals. One is based on the presentation of the fractal as the boundary of a countable Gromov hyperbolic graph, whereas the other one consists in taking all possible “backward” extensions of the above hyperbolic graph and considering them as the classes of a discrete equivalence relation on an appropriate compact space. Illustrating these tec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Australasian J. Combinatorics
دوره 35 شماره
صفحات -
تاریخ انتشار 2006