Sierpiński gasket graphs and some of their properties

نویسندگان

  • Alberto M. Teguia
  • Anant P. Godbole
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A 2-parametric generalization of Sierpinski gasket graphs

Graphs S[n, k] are introduced as the graphs obtained from the Sierpiński graphs S(n, k) by contracting edges that lie in no triangle. The family S[n, k] is a previously studied class of Sierpiński gasket graphs Sn. Several properties of graphs S[n, k] are studied in particular, hamiltonicity and chromatic number.

متن کامل

Uniform spanning trees on Sierpiński graphs

We study spanning trees on Sierpiński graphs (i.e., finite approximations to the Sierpiński gasket) that are chosen uniformly at random. We construct a joint probability space for uniform spanning trees on every finite Sierpiński graph and show that this construction gives rise to a multi-type Galton-Watson tree. We derive a number of structural results, for instance on the degree distribution....

متن کامل

Coloring Sierpiński graphs and Sierpiński gasket graphs

Sierpiński graphs S(n, 3) are the graphs of the Tower of Hanoi with n disks, while Sierpiński gasket graphs Sn are the graphs naturally defined by the finite number of iterations that lead to the Sierpiński gasket. An explicit labeling of the vertices of Sn is introduced. It is proved that Sn is uniquely 3-colorable, that S(n, 3) is uniquely 3-edgecolorable, and that χ′(Sn) = 4, thus answering ...

متن کامل

On the Hausdorff Dimension of the Sierpiński Gasket with respect to the Harmonic Metric

The spectral dimension and the Hausdorff dimension of the Sierpiński gasket are known to be different. Kigami proved that the Hausdorff dimension dh with respect to the harmonic metric is less than or equal to the spectral dimension and conjectured equality. We give estimates of dh which are strictly less than the spectral dimension and therefore disprove this conjecture. 1. Sierpiński gasket a...

متن کامل

Random Walks on Sierpiński Graphs: Hyperbolicity and Stochastic Homogenization

We introduce two new techniques to the analysis on fractals. One is based on the presentation of the fractal as the boundary of a countable Gromov hyperbolic graph, whereas the other one consists in taking all possible “backward” extensions of the above hyperbolic graph and considering them as the classes of a discrete equivalence relation on an appropriate compact space. Illustrating these tec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Australasian J. Combinatorics

دوره 35  شماره 

صفحات  -

تاریخ انتشار 2006